900°, making refractive index determinations impossible.

Acknowledgment.-The author is glad to acknowledge the enthusiastic counsel of Dr. Harold C. Hodge throughout the course of the work.

Summary

1. The mean refractive indices of powdered enamel and dentine samples, with differing and known density limits, were determined by the Becke line procedure.
2. The refractive indices of dried enamel lie
between 1.612 and 1.630 and are proportional to the density.
3. The refractive indices of dried dentine lie between 1.555 and 1.580 and are roughly proportional to the density when the fractions are dried under the same conditions for both determinations. Vacuum drying brought about a marked lowering of refractive index.
4. Secondary cementum exhibited a refractive index of $1.560-1.570$ which was little affected by vacuum drying.

Rfecived September 9, 1938
[Contribution from the Gates and Crellin Laboratories of Chemistry, California Institute of Technology; No. 668!

The Crystal Structure of Ammonium Cadmium Chloride, $\mathrm{NH}_{4} \mathrm{CdCl}_{3}$

By Henri Brasseur ${ }^{1}$ and Linus Pauling

In crystalline cadmium chloride, CdCl_{2}, there are octahedral groups CdCl_{6} condensed into layers, each chlorine atom being adjacent to three cadmium atoms. ${ }^{2}$ Tetrahedral coördination is shown by cadmium ${ }^{3}$ with cyanide groups in $\mathrm{K}_{2} \mathrm{Cd}(\mathrm{CN})_{4}$, and with sulfur, selenium and tellurium atoms in the sphalerite and wurtzite type crystals CdS, CdSe and CdTe , and might well occur with chlorine also. There are accordingly two types of reasonable structures for complexes with the composition $\left(\mathrm{CdCl}_{3}\right)_{x}$, the first involving octahedra with shared corners, as for example in the cubic crystal KMgF_{3}, and the second involving rings or chains of tetrahedra, as in the metasilicates. We have determined completely the structure of the orthorhombic crystal $\mathrm{NH}_{4} \mathrm{CdCl}_{3}$, and have found it to be based on octahedral coördination about the cadmium atoms, the CdCl_{6} octahedra being polymerized into infinite double rutile strings which extend parallel to the c-axis of the crystal.

Experimental Methods and Results

The crystals of $\mathrm{NH}_{4} \mathrm{CdCl}_{3}$ used in this investigation were obtained by evaporation of an aqueous solution containing equimolar amounts of $\mathrm{NH}_{4} \mathrm{Cl}$ and CdCl_{2}. The transparent white needles used for the x-ray photographs were about 0.1 sq. mm . in cross section and 3 to 10 mm . in length. In addition to single crystals many twins were ob-

[^0]tained; the nature of the twinning was not studied.

Crystallograplic study ${ }^{4}$ has shown the crystals to be orthorhombic, with axial ratios $0.6059: 1$: 0.7992 and density 2.93. X-ray photographs prepared with 15° oscillation about the directions [100], [010], and [001], with use of $\mathrm{CuK} \alpha$ radiation filtered through nickel, gave the following dimensions for the unit cell

$$
\begin{aligned}
& a_{0}=8.96 \pm 0.02 \AA . \\
& b_{0}=14.87 \pm 0.03 \AA . \\
& c_{0}=3.97 \pm 0.01 \AA .
\end{aligned}
$$

These lead to the axial ratios $0.603: 1: 0.267$, in good agreement with the crystallographic values, after dividing the crystallographic c-axis by three. All indices used in this paper refer to the X-ray axes a_{0}, b_{0}, c_{0} given above.

The observed reflections show the lattice to be simple. The absence of prism reflections $\{h 0 l\}$ with h odd and $\{0 k l\}$ with $k+l$ odd provides strong evidence that the space group is $D_{2 h}^{\mathrm{If}}-$ $P n a m$ or its subgroup $C_{2 j}^{9}-P n a$. In the absence of any observed deviation from holohedral habit of the crystals, we have assumed the space group to be $D_{2 h}^{\mathrm{If}}$; this assumption is given later justification by the derivation of a satisfactory atomic arrangement based on the holohedral space group.

The Atomic Arrangement

The sets of equivalent positions provided by $D_{2 h}^{16}-P n a m$ are
(4) H. Traube, Z. Krist., 29, 602 (1898); A. Johnsen, N. Jahrb. Mineral., 2, 115 (1903).

4a: 000, $0 \frac{1}{2} 0, \frac{1}{2} 0 \frac{1}{2}, \frac{1}{2} \frac{1}{2} \frac{1}{2}$
4 b : $00 \frac{1}{2}, 0 \frac{1}{2} \frac{1}{2}, \frac{1}{2} 00, \frac{1}{2} \frac{1}{2} 0$
4c: $x y 1 / 4, \frac{1}{2}+x \frac{1}{2}-y 1 / 4, \frac{1}{2}-x \frac{1}{2}+y 3 / 4, \overline{x y} 3 / 4$
8d: $x y z, \frac{1}{2}+x \frac{1}{2}-y z, \frac{1}{2}-x \frac{1}{2}+y \frac{1}{2}+z, \overline{x y} \frac{1}{2}+$
$z, \overline{x y z}, \frac{1}{2}-x \frac{1}{2}+y \bar{z}, \frac{1}{2}+x, \frac{1}{2}-y \frac{1}{2}-z, x y \frac{1}{2}-z$
The unit cell contains $4 \mathrm{NH}_{4} \mathrm{CdCl}_{3}$, the number of molecules calculated from the cell dimensions and density being 3.99 . The possibility that 8 Cl occupy the positions 8 d is ruled out by the small value $3.97 \AA$. of c_{0}, since the distance $c_{0} / 2=1.99$ \AA. between non-bonded chlorine atoms is very much less than that found in any crystal. It was noted, moreover, that the intensities of the X-ray reflections indicate strongly that all of the atoms are in planes $c_{0} / 2$ apart. An arrangement of this type leads to the same structure factor for all the reflections ($h k 0$), ($h k 2$), ($h k 4$), etc., and also for all the reflections ($h k 1$), ($h k 3$), etc.; and it was observed that on oscillation photographs the intensities of the reflections with $l=2$ and $l=4$ reproduce those with $l=0$, but somewhat diminished because of the larger scattering angles, and that similarly the intensities of the reflections with $l=3$ reproduce those with $l=1$.

This observation requires that all of the atoms occupy the positions 4 c , forming layers at $z=$ $1 / 4$ and $z=3 / 4$. (Layers at $z=0$ and $z=1 / 2$ are ruled out by the fact that positions $4 a$ and $4 b$ could accommodate only two of the five atoms in the molecule.)

There are ten parameters to be evaluated in the determination of the atomic arrangement: $x_{\mathrm{NH}_{4}}$, $y_{\mathrm{NH}_{4}}, x_{\mathrm{Cd}}, y_{\mathrm{Cd}}, x_{1}, y_{1}, x_{I I}, y_{I I}, x_{I I I}$ and $y_{\text {III }}$ (the subscripts I, II and III referring to the three nonequivalent sets of chlorine atoms). As the first step in this process sections of the three-dimensional Patterson-Fourier diagram ${ }^{5}$ were made for the levels $z=0$ and $z=1 / 2$, as recommended by Harker, ${ }^{6}$ with use of the general equation

$$
\begin{equation*}
P(x, y, z)=\Sigma_{h} \Sigma_{k} \Sigma_{l}\left|F_{h k l}\right|^{2} \cos 2 \pi(h x+k y+l z) \tag{1}
\end{equation*}
$$

The calculations could be based on the observed values of intensities of planes ($h k 0$) and ($h k 1$) alone, because of the intensity regularities, mentioned above, which result from the special values $1 / 4$ and $3 / 4$ for the z coördinates of all the atoms. The function f^{2} / Z^{2} (f being the atomic scattering power and Z the atomic number) in its dependence on $\sin \theta / \lambda$ has nearly the same values for the atoms Cd, Cl, and N . An averaged function for these atoms was plotted, and summed over l for series of reflections ($h k l$), with l either even or
(5) A. L. Patterson, Z. Krist., 90, 517 (1935).
(6) D. Harker, J. Chem. Phys., 4, 381 (1936).
odd, in order to obtain the factors with which the intensities for reflections ($h k 0$) and ($h k 1$) were multiplied to give the sums over l in Equation 1 . The remaining double summations for $z=0$ and $z=1 / 2$ were then carried out with the aid of the Beevers-Lipson strips, ${ }^{7}$ all of the data of Table I being used. The values of $|F|$ given in the table were obtained from visually estimated intensity values by correction for the Lorentz and polarization factors, the temperature factor being ignored. Contour diagrams representing the results of the calculations are shown as Figs. 1 and 2.

$a_{0} / 2$
Fig. 1.-Patterson-Harker diagram for the section $z=0$. The peaks represent the following principal interatomic distances: $\mathrm{A}, \mathrm{Cd}-\mathrm{Cd} ; \mathrm{B}, \mathrm{Cd}-\mathrm{Cl}_{\mathrm{I}}, \mathrm{Cd}-$ $\mathrm{Cl}_{\text {III }} ; \mathrm{C}, \mathrm{Cd}-\mathrm{Cl}_{\text {II }}$ (occurring twice); $\mathrm{D}, \mathrm{Cd}-\mathrm{Cl}_{\mathrm{II}}$, $\mathrm{Cd}-\mathrm{Cl} ; \mathrm{E}, \mathrm{Cd}-\mathrm{Cl}_{\mathrm{I}} ; \mathrm{F}, \mathrm{Cd}-\mathrm{Cl}_{\mathrm{II}}$.

$a_{0} / 2$
Fig. 2.-Patterson-Harker diagram for the section $z=1 / 2$. The peaks represent the following principal interatomic distances: $\mathrm{A}, \mathrm{Cd}-\mathrm{Cd} ; \mathrm{B}, \mathrm{Cd}-\mathrm{Cd} ; \mathrm{C}$, $\mathrm{Cd}-\mathrm{Cl}_{I} ; \mathrm{Cd}_{\mathrm{-}} \mathrm{Cl}_{\mathrm{II}} ; \mathrm{E}, \mathrm{Cd}-\mathrm{Cl}_{\mathrm{III}} ; \mathrm{F}, \mathrm{Cd}-\mathrm{Cl}_{I} ; \mathrm{G}, \mathrm{Cd}-\mathrm{Cl}_{\mathrm{II}}$: $\mathrm{Cd}-\mathrm{Cl}_{\text {lin! }}$.

Peaks in the Patterson-Fourier diagrams represent interatomic distance vectors between pairs of atoms extending from the origin, weighted by the
(7) C. A. Beevers and H. Lipson, Phil. Mag., 17, 855 (1934): Proc. Phys. Soc. (London), 48, 772 (1936).

Table I
Reffections $h k 0, h+k$ even．Structure factor： $4 \Sigma_{i} f_{i} \cos h x_{i} \cos k y_{i}$

		$\begin{aligned} & \text { 宮 } \\ & \text { 另 } \end{aligned}$
hk0	$\frac{1}{4} F_{\text {calcd }}$ ．	
020	36.9	24.4
040	18.8	15.1
060	－11．6	14.8
080	－21．8	22.1
$0 \cdot 10 \cdot 0$	-4.2	\cdots
$0 \cdot 12 \cdot 0$	-11.8	8.0
$0 \cdot 14 \cdot 0$	9.6	8.2
$0 \cdot 16 \cdot 0$	11.6	14.8
$0 \cdot 18 \cdot 0$	38.2	46.5
200	－23．4	14.0
400	－ 9.8	5.1
600	37.4	31.8
800	-15.3	12.2
$10 \cdot 0 \cdot 0$	－13．4	10.5
110	23.1	10.0
130	7.1	3.5
150	-27.7	17.3
170	-17.7	88.4

120	24.8	12.9
140	23.6	16.0
160	36.4	33.4
180	1.5	\ldots.
$1 \cdot 10 \cdot 0$	-3.8	6.8
$1 \cdot 12 \cdot 0$	-24.9	24.8
$1 \cdot 14 \cdot 0$	-22.9	33.8
$1 \cdot 16 \cdot 0$	-13.8	3.7
$1 \cdot 18 \cdot 0$	-10.5	2.8
210	9.8	6.5
230	29.9	19.7
250	28.5	17.9
270	28.8	18.5
290	5.0	\ldots

Reflections $h k 0, h+k$ odd．Structure factor： $4 \Sigma_{i} f_{i} \sin h x_{i} \sin k y_{i}$

－ 15.7	16.8	450	-26.8	32.5	610	-9.8	7.1	$7 \cdot 14 \cdot 0$	-24.5	31.5
－-16.5	20.0	470	-10.3	6.8	630	-1.5		810	9.8	5.4
-20.0	17.6	490	-5.2		650	5.0		830	5.8	2.8
1.6		$4 \cdot 11 \cdot 0$	10.8	15.7	670	6.5	8.0	850	27.1	35.6
8.1	17.7	$4 \cdot 13 \cdot 0$	8.8	11.9	690	5.8	8.0	870	22.1	23.8
8.2	7.4	4．15．0	19.7	18.2	$6 \cdot 11 \cdot 0$	9.3	8.0	890	4.6	
-5.8	2.0	520	23.6	25.7	$6 \cdot 13 \cdot 0$	2.9	10.5	$8 \cdot 11 \cdot 0$	-9.2	6.3
10.2	6.8	540	29.6	32.5	$6 \cdot 15 \cdot 0$	-4.9		$8 \cdot 13 \cdot 0$	-32.5	40.2
-11.4		560	-13.2	12.2	720	6.5	7.8	920	－ 6.0	．．．．
－2．1		580	-7.3		740	16.0	20.2	940	-2.7	
-2.8		5． 10.0	9.0	10.7	760	22.8	19.7	960	4.6	8.3
1.1		$5 \cdot 12 \cdot 0$	10．7		780	15.7	18.9	980	10.0	6.6
11.1	3.2	$5 \cdot 14 \cdot 0$	20.5	16.6	$7 \cdot 10 \cdot 0$	-8.6	7.7	$9 \cdot 10 \cdot 0$	-1.4	5.4
－37．9	45.5	$5 \cdot 16 \cdot 0$	23.4	29.3	$7 \cdot 12 \cdot 0$	-23.2	23.7			

$h k 1$			紬			$h k 1$			$h k 1$			$h k 1$		
111	27.1	16.2	2．10．1	-15.0	13.3	441	-11.1	11.9	$5 \cdot 15 \cdot 1$	-7.3	11.6	$7 \cdot 11 \cdot 1$	-12.6	
131	－ 3.9	5.4	2．12．1	-3.9		461	-5.0		601	-3.4		801	45.4	46.9
151	－ 3.2		$2 \cdot 14 \cdot 1$	3.8	6.1	481	17.7	16.9	621	8.3	6.0	821	17.9	23.5
171	－38．9	37.7	$2 \cdot 16 \cdot 1$	19.2	20.0	4．10．1	21.4	16.8	641	－10．5	3.4	841	-1.2	1.7
191	－23．2	24.6	311	4.9	1.4	$4 \cdot 12 \cdot 5$	6.2	．．．	661	－ 3.1		861	-10.4	3.7
1．11．1	－28．3	21.1	331	0.1		4．14．1	-7.4		681	5.5	7.4	881	-12.5	12.3
1．13．1	-10.9	13.1	351	－ 8.9	7.4	4．15－1	-29.7	24.6	6．10．1	3.2		$8 \cdot 10 \cdot 1$	-4.1	
1－15．1	0.6	8.2	371	5.6		511	-8.8	6.5	$6 \cdot 12 \cdot 1$	7.2		8．12．1	-10.0	4.8
$1 \cdot 17 \cdot 1$	9.1	4.0	391	-4.9		531	-12.5	15.4	$6 \cdot 14 \cdot 1$	－11．2	7.4	911	6.6	
201	38.3	22.5	$3 \cdot 11 \cdot 1$	9.0	12.2	501	12.2	14.5	711	16.8	20.7	931	1.4	7.1
22.1	44.9	23.3	3．13．1	-4.6		271	17.6	22.9	731	6.8		951	-10.6	9.1
241	12.0	4.3	3．15．1	-4.2	．．．．	591	36.3	37.6	751	－24．4	21.9	971	0.6	
261	-9.8	10.0	401	－27．9	21.0	5．11．1	27.1	36.8	771	－23．0	26.0	991	3.7	
281	－-11.8	10.5	421	-32.5	29.3	$5 \cdot 13 \cdot 1$	13.8		791	-27.6	22.0			

Reflections $h k 1, \dot{n}+k$ odd．Structure factor： $4 \Sigma_{i} f_{i} \cos h x_{i} \sin k y_{i}$

011	13.4	5.4	1．14．1	－17．6	16.9	$3 \cdot 10 \cdot 1$	14.1	16.8	581	15.3	11.6	781	-1.2	
031	13.3	7.9	1．16．1	-7.2		3．12．1	11.4	7.4	5．10．1	-9.7		7－10．1	3.8	
051	45.6	44，9	211	－27．4	23.9	3．14．1	23.2	21.8	$5 \cdot 12 \cdot 1$	13.4	21.3	7－12．1	－19．5	19.4
071	28.0	29.6	231	－16．8	17.5	$3 \cdot 16 \cdot 1$	27.5	31.2	$5 \cdot 14 \cdot 1$	－14．8	6.5	811	－6．6	
091	7.6		251	-18.9	11.8	411	-2.8		611	5.9	7.1	831	－11．4	15.1
0.11 .1	-7.1	8.2	271	－－ 4.8	5.7	431	－27．9	27.9	631	20.2	26.4	851	－12．5	8.3
$0 \cdot 13 \cdot 1$	－36．9	41.0	291	8.5	8.3	451	1.3 .9	14.5	651	23.7	32.4	871	－ 3.9	11.1
$0 \cdot 15 \cdot 1$	7.0	15.7	2．11．1	-4.4		471	-3.2		671	24.4	26.0	891	-1.2	
$0 \cdot 17 \cdot 1$	6.3		2．13．1	9.1	5.1	491	-1.4	－．．．	691	4.8	\cdots	8．11．1	2.7	11.6
121	2.8	4.0	2．15．1	4.6	6.8	4．11．1	5.6	10.2	$6 \cdot 11 \cdot 1$	-17.1	24.0	921	－18．9	17.8
141	8.5	5.4	$2 \cdot 17 \cdot 1$	15.5	11.7	$4 \cdot 13 \cdot 1$	0.5	．．．	$6 \cdot 13 \cdot 1$	-20.7	24.8	941	-16.2	10.5
161	20.8	15.2	321	81.2	29.3	4．15．1	14.9	12.5	721	7.2	7.1	961	-25.7	31.6
181	16.9	18.6	341	-37.4	31.8	521	－ 2.8	4.0	741	7.1	7.4	981	－0．9	
1－10．1	9.2	16.8	361	17.3	16.9	541	16.8	14.2	761	20.2	19.4	9．10．1	2.8	
$1 \cdot 12 \cdot 1$	-17.1	23.1	381	－ 9.3	2.0	36	0.3	3.4						

products of the scattering powers of the atoms．and $\mathrm{Cd}-\mathrm{Cl}$ ．At $z=0$ the $\mathrm{Cd}-\mathrm{Cd}$ peak should The principal peaks expected are those for $\mathrm{Cd}-\mathrm{Cd}$
$x_{\mathrm{Cd}} 1 / 2-y_{\mathrm{Cd}} 1 / 4$; that is, at the point $1 / 21 / 2-$ $2 y_{\mathrm{cd}}$. The most pronounced peak in Fig. 1 is in fact at $1 / 2,0.385$, corresponding to $y_{\mathrm{Cd}}=0.0575$. The most pronounced peak of Fig. 2, at 0.1667, $1 / 2$, similarly corresponds to $1 / 2-2 x_{\mathrm{Cd}} 1 / 2$, and leads to the value $x_{\mathrm{Cd}}=0.1667$. Another $\mathrm{Cd}-\mathrm{Cd}$ peak, at $2 x_{\mathrm{cd}} 2 y_{\mathrm{cd}}$, also appears on this diagram in the position required by these parameter values.

These values of x_{Cd} and y_{Cd} can be combined with the coördinates of the remaining peaks to obtain values for the coördinates for chlorine atoms. Thus for the level $z=0 \mathrm{Cd}-\mathrm{Cl}$ or $\mathrm{Cd}-\mathrm{N}$ peaks are expected at $x_{\mathrm{Cd}}-x, y_{\mathrm{Cd}}-y ; 1 / 2+x_{\mathrm{Cd}}$ $-x, 1 / 2-y_{\mathrm{Cd}}-y$; etc. The parameter values obtained in this way are

$$
\begin{aligned}
& x_{\mathrm{I}}=0.305 \quad y_{\mathrm{I}}=0.219 \\
& x_{\mathrm{II}}=.164 y_{\mathrm{II}}=.505 \\
& x_{\mathrm{III}}=.025 y_{\mathrm{HII}}=.893
\end{aligned}
$$

In addition the ammonium ions can be assigned the parameter values $x_{\mathrm{NH}_{4}}=0.43, y_{\mathrm{NH}_{4}}=0.82$, inasmuch as these positions are the only ones compatible with a minimum $\mathrm{NH}_{4}-\mathrm{Cl}$ distance of about $3.1 \AA$. These parameter values lead to a structure which is stereochemically satisfactory, as described below.

In order to obtain more accurate values of the parameters a section at $z=1 / 4$ of a three-dimensional Bragg-Fourier calculation was carried out, with use as the signs of the F 's of those given by the approximate parameter values. The summation over l for the series

$$
\begin{equation*}
D(x, y, z)=\Sigma_{h} \Sigma_{k} \Sigma_{l} F_{h k l} \cos 2 \pi(h x+k y+l z) \tag{2}
\end{equation*}
$$

was made in a way similar to that for the Patterson diagrams, namely, by summing the quantity f / Z for series of reflections ($h k l$) with l even or odd to obtain factors for $F_{k k 0}$ and $F_{h k 1}$.

The Bragg-Fourier diagram at $z=1 / 4$, shown as Fig. 3, has a very high peak for the cadmium atom, three peaks for the three chlorine atoms, and a small peak for the ammonium ion, in positions corresponding to the following parameter values, which differ by only small amounts from the initial values:

$$
\begin{aligned}
& x_{\mathrm{Cd}}=0.165 y_{\mathrm{Cd}}=0.054 \\
& x_{\mathrm{I}}=.284 y_{\mathrm{I}}=.215 \\
& x_{\mathrm{II}}=.167 y_{\mathrm{II}}=.496 \\
& x_{\mathrm{III}}=.026 y_{\mathrm{III}}=.898 \\
& x_{\mathrm{NH}}=.43 y_{\mathrm{NH}_{4}}=.82
\end{aligned}
$$

The agreement between observed and calculated amplitudes of reflection is seen from Table I to be satisfactory. Screening-constant atomic scatter-
ing factors ${ }^{8}$ were used in the calculation of the F values.

$a_{0} / 2$
Fig. 3.-Bragg-Fourier diagram for the section $\mathbf{z}=$ $1 / 4$. The four peaks in the upper part of the diagram represent, from left to right, the atoms $\mathrm{Cd}, \mathrm{Cl}_{\mathrm{I}}, \mathrm{Cl}_{\mathrm{II}}$, and $\mathrm{Cl}_{\text {III }}$, and the two peaks below represent $\mathrm{Cl}_{\text {III }}$ (in part) and NH_{4}.

Description of the Structure

The structure found for $\mathrm{NH}_{4} \mathrm{CdCl}_{3}$ is shown in Fig. 4. Each cadmium atom is surrounded by six chlorine atoms, which form a nearly regular octahedron. The $\mathrm{Cd}-\mathrm{Cl}$ distances have the values 2.60 (2), $2.62,2.64$, and 2.72 (2) \AA. , the average of these, $2.65 \AA$., being almost identical with the $\mathrm{Cd}-\mathrm{Cl}$ distance in $\mathrm{CdCl}_{2}, 2.66 \AA$. The variation about the average is probably not real, but the result of small errors in the parameter values. The $\mathrm{Cl}-\mathrm{Cl}$ distances along octahedral edges have the values 3.53 (2), 3.68 (2), 3.69 (2), 3.73 (2), 3.80 (2), and 3.97 (2) \AA. Each octahedron shares two opposed edges with other octahedra to form octahedral strings parallel to the c-axis, as in the rutile structure. These rutile

Table II
Interatomic Distances in $\mathrm{NH}_{4} \mathrm{CdCl}_{8}$

Atom	Neighbors	Distance \AA	Atom	Neighbors	Distance \AA.
Cd	$2 \mathrm{Cl}_{\text {II }}$	2.60	$\mathrm{Cl}_{\text {II }}$	2 Cd	2.60
	$1 \mathrm{Cl}_{I}$	2.62		$2 \mathrm{NH}_{4}$	3.40
	$1 \mathrm{Cl}_{\text {III }}$	2.64		$1 \mathrm{NH}_{4}$	3.47
	$2 \mathrm{Cl}_{\text {III }}$.	2.72		$1 \mathrm{Cl}_{111}$	3.53
				$2 \mathrm{Cl}_{\text {II }}$	3.62
NH_{4}	$4 \mathrm{Cl}_{\text {I }}$	3.27		$2 \mathrm{Cl}_{\text {I }}$	3.76
	1 CliII	3.34		$2 \mathrm{Cl}_{\text {III }}$	3.80
	$2 \mathrm{Cl}_{\text {II }}$	3.40		$2 \mathrm{Cl}_{\text {II }}$	3.97
	$1 \mathrm{Cl}_{\text {II }}$	3.47		$1 \mathrm{Cl}_{1}$	4.30
	$1 \mathrm{Cl}_{\text {III }}$	3.82		$1 \mathrm{Cl}_{1}$	4.64
$\mathrm{Cl}_{\text {I }}$	1 Cd	2.62	$\mathrm{Cl}_{\text {III }}$	1 Cd	2.64
	$4 \mathrm{NH}_{4}$	3.27		2 Cd	2.72
	$2 \mathrm{Cl}_{\text {II }}$	3.73		$1 \mathrm{NH}_{4}$	3.34
	$2 \mathrm{Cl}_{\text {III }}$	3.76		$1 \mathrm{NH}_{4}$	3.82
	$2 \mathrm{Cl}_{\text {III }}$	3.80		$1 \mathrm{Cl}_{\text {II }}$	3.53
	2 Cl	3.97		$2 \mathrm{Clinf}^{\text {l }}$	3.68
	$1 \mathrm{Cl}_{\text {II }}$	4.30		$2 \mathrm{Cl}_{\text {II }}$	3.69
	$2 \mathrm{Cl}_{\text {I }}$	4.59		$2 \mathrm{Cl}_{\mathrm{I}}$	3.76
	$1 \mathrm{Cl}_{\text {II }}$	4.64		$2 \mathrm{Cl}_{\text {I }}$	3.80
				2 CliII	3.97

[^1]strings are further condensed in pairs, each octahedron sharing two edges with octahedra of the adjacent string. The four shared edges are, as usual for partially ionic crystals, somewhat shorter than the unshared edges.

The chlorine atoms form bonds to the following numbers:
$\mathrm{Cl}_{\mathrm{I}}: 1$ with $\mathrm{Cd}, 4$ with NH_{4}
$\mathrm{Cl}_{\mathrm{iI}}$: 2 with $\mathrm{Cd}, 3$ with NH_{4}
$\mathrm{Cl}_{\mathrm{HII}}: 3$ with $\mathrm{Cd}, 2$ with NH_{4}

Fig. 4.-The structure of $\mathrm{NH}_{4} \mathrm{CdCl}_{8}$. projected on the plane (001). Light circles represent atoms at $z=1 / 4$ and heavy circles those at $z=3 / 4$. Cadmium and chlorine atoms are shown as small and large circles, and ammonium ions as circles of intermediate size.
 Each ammonium ion is in contact with nine chlorine atoms, at about 3.27 (2), 3.27 (2), 3.34, 3.40 (2), 3.47 , and $3.82 \AA$. The average of these distances, excluding the largest, is $3.31 \AA$., which is nearly the same as in $\mathrm{NH}_{4} \mathrm{Cl}\left(\mathrm{NH}_{4}-\mathrm{Cl}=3.27\right.$ \AA. for the high temperature form, with the sodium chloride structure, and $3.34 \AA$. for the low temperature form, with the cesium chloride structure). The nine chlorine atoms are arranged in the most compact configuration possible for coördination number nine-a triangle of three in the equator, and smaller triangles above and below rotated through 60°. The $\mathrm{Cl}-\mathrm{Cl}$ distances along the edges of this polyhedron have the values 3.62 (2), 3.69 (2), 3.73 (2), 3.76 (4), 3.80 (2), 4.30 (2), 4.59 (2), and 4.64 (2) A.

Cleavage along planes of the zone [001] might be expected for the crystal; no cleavage has been reported, however, nor did we observe any in experiments with our small crystals.

These have the total strengths $7 / 9$, 1 , and $11 / 9$, respectively; there is, accordingly, some discrepancy with the electrostatic valence rule. ${ }^{9}$ It is interesting that the substance crystallizes with this structure rather than a structure such as that of KMgF_{3}, in which the halogen atoms are equivalent, each being common to two octahedra.
The arrangement of the chlorine atoms is compact; as shown in Table II, each chlorine atom has eleven or twelve chlorine atoms as neighbors, at distances between 3.53 and $4.64 \AA$.

The authors are indebted to the Belgian-American Foundation for the grant of a Fellowship to one of them, permitting this investigation to be carried out.

Summary

A complete structure determination has been made of the orthorhombic crystal $\mathrm{NH}_{4} \mathrm{CdCl}_{3}$. The unit of structure has the dimensions $a_{0}=$ $8.96 \pm 0.02 \AA ., b_{0}=14.87 \pm 0.03 \AA ., c_{0}=3.97 \pm$ $0.01 \AA$., and contains $4 \mathrm{NH}_{4} \mathrm{CdCl}_{3}$. The atomic positions are $x y 1 / 4, \frac{1}{2}+x \frac{1}{2}-y 1 / 4, \frac{1}{2}-x \frac{1}{2}$ $+y^{3} / 4, \overline{x y} 3 / 4$ of the space group $D_{2 i}^{16}-P n a m$, with the following parameter values x, y : Cd, $0.165,0.054 ; \mathrm{Cl}_{\mathrm{I}}, 0.284,0.215 ; \mathrm{Cl}_{11}, 0.167,0.496$; $\mathrm{Cl}_{\text {III }}, 0.026,0.898 ; \mathrm{NH}_{4}, 0.43,0.82$.

The CdCl_{3} complexes occur in the crystal as infinite polymers, in the form of double rutile strings of CdCl_{6} octahedra parallel to the c axis. These complexes are held together by ammonium ions, each of which has nine chlorine atoms coördinated about it. Interatomic distances in the crystal (Table II) are closely related to those in CdCl_{2} and $\mathrm{NH}_{4} \mathrm{Cl}$.
Pasadena, Calif. Received September 6, 1938 (9) L. Pauling, This Journal, 51, 1010 (1929).

[^0]: (1) Fellow of the Belgian-American Educational Foundation.
 (2) L. Pauling, Proc. Natl. Acad. Sei., 15, 709 (1929); L. Palling and J. L. Hoard, Z. Krist., 74, 546 (1930).
 (3) R. G. Dickinson. This Journat, 44, 774 (1922).

[^1]: (8) L. Pauling and J. Sherman, Z. Krist., 81, 1 (1932).

